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1. Introduction:  Some Earlier Efforts 

The theory of plasticity was originally formulated on the basis of purely phenomenological 
approach.  The monograph of Hill (1) reviews the contributions of Tresca, von Mises, Drucker, 
Timoshenko, Illyushin, and many other mechanists and mathematicians who used this approach.  
The macroscopic hysteresis, i.e., of the dependence of the “strain-stress” relationships upon the 
history of loading, was the central physical phenomenon studied during this period.  When using 
the purely macroscopic and phenomenological methods, the microscopic physical mechanisms 
of the hysteresis remain unexplained.  Such a direct analysis of the macroscopic experiment has 
its strong features.  Among them, for instance, the absence of any unnecessary ad hoc 
hypothesis, the reduced theoretical ambiguities in the models, and the conceptual simplicity in 
interpretation of experimental data and theoretical results.  On the other hand, all the results of 
the earlier plasticity theory were about statics, dynamics, and optimization of structures—not 
about the physical properties of materials. 

Taylor (2) and his contemporaries made a major breakthrough in the physics of plasticity by 
introducing a theoretical concept of dislocation as the micro-mechanism of plasticity and 
showing its practical fruitfulness.  Later on, the experimental observations of the dislocations 
have been reported in many publications (see a detailed review by Hirth [3]).  The success and 
impact of this concept is too multifaceted to be discussed here.  On the theoretical side, however, 
there are some serious technical drawbacks in dealing with dislocations, which include, among 
others, the necessity of dealing with singular elastic fields in the vicinity of dislocations cores 
and much bigger overall difficulties for the theoretical analysis (using methods matching 
asymptotic expansions, methods of homogenizations, essentially more difficult boundary value 
problems, etc.).  

The acceptance of the dislocation-based mechanism of plasticity entailed many different 
attempts to describe the behavior of ensembles of dislocations.  Naturally, there were even 
attempts to derive the classical equations of macroscopic plasticity by means of homogenization 
of the microscopic ensembles of dislocations.  All these efforts, unfortunately, were not 
successful.  One of the Russian plasticity authorities—Yuri Rabotnov—even claimed (4) that he 
does not believe in the possibility of deriving phenomenological equations of macroscopic 
plasticity by means of convincing homogenization of any microscopic models. 

We strongly believe, however, that, at present, the essential progress in this direction can be 
achieved.  Our belief is based on the progress, reached during last decades in thermodynamics of 
heterogeneous systems, from one hand, and in the development of rigorous mathematical 
theories of homogenization (5, 6).  The central theoretical notion of the mathematical theory of 
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homogenization is the elementary cell of the structure.  The main technical tools of this theory 
are the so-called G-convergence and the asymptotic method of the two-scale asymptotic 
expansions (7). 

When homogenizing the periodic microstructures of dislocations, the elementary cell is just a 
parallelepiped of periodicity containing a single dislocation.  This sort of microstructure is not 
easy to handle in a rigorous way because, currently, the descriptions of the individual 
dislocations, on their own, are far of to be rigorous enough.  There are more chances of achieving 
success using the microstructures proposed by Batdorf and Budiansky (8).  Instead of using a 
micro-model of dislocation, they used as the building brick for their theory the concept of 
elementary slip within an elementary mono-crystallites.  Their approach was further developed 
and reviewed in the summarizing monograph (9).  Strategically, we keep in mind this very 
micro-model of plasticity in our efforts to suggest a macroscopic theory of limited plasticity. 

2. Typical Microstructures 

Practically, in any real polycrystalline material, the system of monocrystalline grains is a chaotic 
ensemble with stochastic distributions of sizes, shapes, crystallographic orientations, etc., similar 
to those in figure 1. 

 

 

Figure 1.  Microstructure of polycrystalline substance. 

 
There is considerable progress in the theoretical problem of homogenization of stochastic 
microstructures.  But it is much more complex than homogenization of periodic microstructures 
(5–7).  This difficulty is not purely technical:  in fact, it has purely physical roots.  The stochastic 
microstructures are characterized by much more complex physical phenomena than, say, 
periodic microstructures.  Nonetheless, there are also many physical and mathematical 
similarities in the behavior and in the mathematical analysis of the stochastic and periodic 
microstructures.  Basically, theoretical homogenization of periodic microstructures is much 



 3

simpler and transparent.  Theorists dealing with sintering of ceramics (10) traditionally 
concentrate first on heterogeneous system with periodic distributions of monocrystalline grains, 
such as a hexagonal system shown in figure 2a. 

 

 

Figure 2.  Models of ensembles of periodically distributed crystallites with stochastically (a) 
and periodically (b) distributed orientations of single slip systems. 

Each mono-crystalline grain behaves as an elasto-plastic solid.  The elastic behavior is nothing 
more than the displacements of particles in which atomic order of particles does not change.  The 
inelastic behavior, by definition, includes processes involving essential changes on the atomic 
order.  The simplest model of inelasticity is associated with slippage along preferably oriented 
plane.  A plastic slip system is a set of parallel atomic planes of a special crystallographic 
orientation.  Each of those planes split the crystal into two parts, and the two parts can easily 
slide with respect to the other as a whole (see figure 3).  In the process of sliding, the atoms 
adjacent to the corresponding slip plane, change their neighbors on the opposite side of plane.  
Although the shape of the individual mono-crystals changes considerably, the mono-crystalline 
character of the substance remains preserved.  

 

Figure 3.  The system of plastic slip within 
crystalline substance. 

 
A highly plastic crystalline substance possesses many different slip systems, supplying the 
crystal with many degrees of freedom for changing its shape when adjusting to external loading.  
The more slip families exist the more pronounced is the plastic behavior.  The crystal with a 
single slip system shows very limited plasticity—this makes such a model particularly promising 
for modeling polycrystalline ceramics.
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For rigorous theoretical analysis, however, further simplifications of the model are mandatory at 
this stage.  To make our analysis more transparent, we consider a purely elastic matrix filled with 
periodically distributed plastic inclusions (see figure 4).  We believe that will help the readers to 
get a better insight of the behavior and role of the elastic and plastic mechanisms. 

 
 

 

Figure 4.  Elastic matrix with periodic distribution of “decks-of-cards.” 
The plastic inclusion possesses a single family of slip planes but it shows no elastic properties.  
This model of inclusion was coined as the “deck-of-cards” model.  The matrix is assumed 
perfectly elastic, i.e., able to accumulate elastic energy.  The inclusions behave like plastic 
solids: they are not able to accumulate any bulk elastic energy, instead they possess a single 
system of slip planes.  Such a model appears to be simple enough to allow quite deep 
thermodynamic analysis. 

When dealing with plastic deformations we ought to distinguish between the reference 
configuration R , the intermediate configuration I , and the actual configurations A  (11).  For 
deformable elasto-plastic inclusions and the “deck-of-cards” plasticity models, the configurations 
are shown in figure 5. 

 

(a) (b)  

Figure 5.  The configurations:  (a) deformable inclusions and (b) “deck-of-cards” model. 
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Thus, we have to distinguish between the three boundary surfaces  , , andR I AS S S  of the same 
inclusion in the reference, intermediate, and actual configurations, respectively.  Obviously, the 
surface IS  can be transformed into AS  by means of combined displacement and rotation. 

 

3. The Kinematics and Energy of the “Deck-of-Cards” Model 

Modern rigorous methods of homogenization begin with the analysis of the so-called “cell 
problem,” which is a problem formulated for the elementary cell with periodic boundary 
condition.  The elementary element for our problem is shown in figure 6.  The simplest geometry 
and kinematics can be characterized by the two fixed-unit orthogonal vectors iv  and il , the 
scalar function of one variable ( ),d ρ  and the solid displacement D .  In what follows, we call the 
unit vector il  the sliding director.  The solid displacement D  includes the constant vector of 
translation ia  and a constant tensor of rotation i

jR ⋅ . 

 

 

Figure 6.  The geometry and kinematics of the 
elementary cell. 

 
In the suggested model, the slip system consists of the one-parameter family of parallel planes 
with the unit normal ν (in the reference and intermediate—but not actual—configurations).  We 
postulate that all material points of the plane parallel to the basal plane at the distance h  
experience the same relative slip displacement ( )i is l d h= .  The total displacement iU  of the 
point ix  of the inclusion can be decomposed into the distributed slip s  and the displacement of 
the inclusion as rigid whole: 
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 ( )i
.( ) ( ) ,i i k k i l
k lU x a R x l d h x h xν= + + − ≡ , (1) 

where ia  is the vector of translation, and .
i
kR  is the tensor of rotation. 

The total displacements are assumed continuous displacements across the interface: 

 i i

inc mat
U u= , (2) 

where iu  is the displacement vector of the matrix. 

We assumed that only matrix is capable of accumulating bulk energy.  Let )( | jiuψ  be the bulk 
energy density per unit volume of the matrix.  The equation of equilibrium for the system can be 
established by applying the minimum energy principle to the energy functional  

 ,( )i jE d u
ω

ωψ= ∫ . (3) 

When minimizing the energy (equation 3), the continuity constraint (equation 2) should be taken 
into account. 

With few exceptions, the elementary cell problem cannot be solved explicitly.  There is one 
important case permitting further explicit analysis.  It is the dilute concentration case, i.e., the 
case when the inclusions’ dimensions are much smaller then the dimensions of the whole cell of 
periodicity.  In the case of dilute concentration, instead of the problem with periodic boundary 
conditions one ought to consider a much simpler problem.  This problem deals with a single 
inclusion within an unbounded domains subjected to specified displacement gradients at infinity: 

 | |j j
i iju x at x→ Δ → ∞ . (4) 

In what follows, only this very problem will be analyzed.  

 

4. The Exact System of Equilibrium Equations 

The exact equations of equilibrium for this system can be derived by calculating the first energy 
variation of the total energy (equation 3) and separating the independent variation of the existing 
degrees of freedom.  Not dwelling on the cumbersome details, we present the resulting system of 
equilibrium equations: 

• the bulk equation of mechanical equilibrium within the bulk of the matrix 

 0
|

=
∂
∂

∂
∂

ji
j ux

ψ ; (5) 
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• the equation of zero resulting momentum acting on the inclusion  

 

 0
|

=
∂
∂

∫ j
ji

S
n

u
dS ψ ; (6) 

• the equation of zero resulting moment of momentum  

 

 ( ) 0)(
|

.
. =+

∂
∂

∫ p
p

kk
j

ji
S

l
imkl xvdlxn

u
dSR ψε ; (7) 

 
• and the equation for the slip distribution )(hd  

 

 0),(
|

=
∂
∂

ΓΘ∫Γ

k
ikj

ji

lRn
u

hd ψγ , (8) 

 
which should be satisfied for each contour Γ  produced by intersection of the inclusions’ 
interface S  with each of the planes of the slip family.  In equation 7, mklε  is the skew-symmetric 
tensor; in equation 8, Θ  is a geometric factor characterizing the geometry of the interface S  and 
of the slip system explained below. 

The physical meaning of equations 5–8 is quite transparent.  Equation 5 is a standard equation of 
equilibrium within the matrix.  Equations 6 and 7 say that the resultant momentum and moment 
of momentum, acting on the deck-of-cards, should vanish.  The integrand of the equation 8 gives 
the projection on the on the sliding director of the resulting force acting on each contour Γ .  In 
this sense, equation 8 says that not only the inclusion as whole but each its slices should be in the 
state of full mechanical equilibrium under the action of the external forces acting from the 
deformable matrix on each slice. 

 

5. The Geometric Factor 

In order to define the factor ( , ),Θ h γ  let us choose the special Gaussian coordinates ( , )h γ  on the 
inclusions’ interface RS .  First of all, we parameterize the set of the parallel slip planes with the 
parameter ρ (see figure 7).  For any two different planes with the coordinates 1h  and 2h , the 
difference 2 1h h−  is just the distance between the planes (which is the same in all three 
configurations).
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n
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Figure 7.  The geometric factor Θ. 

For each h , we can introduce three different contours , , andΓ Γ ΓR I A
h h h  by intersecting the  

h -plane with the inclusion’s surface in the reference, intermediate, and actual configurations.  In 
the reference configuration, for each h  we introduce the contour coordinates γ , obeying the 
following conditions:  for each contour R

hΓ  the coordinate γ changes within the same interval Iγ , 
and the Gaussian coordinate system ( , )h γ  of the reference inclusions’ boundary RS  is 
sufficiently smooth.  The coordinates ( , )h γ  will be used as the materials coordinates of the 
particles belonging to the boundaries IS  and AS  in the intermediate and actual configurations. 

In the intermediate configuration the line-element ( , )I
hd hγΓ  of the contour I

hΓ  and the surface-
element ( , )IdS hγ  of the surface IS  are given by the following formulas:  

 
 ( , ) , ( , )I I I IdS h dhd d G h dγ γ γ γ= Ξ Γ = . (9) 

 
Now, we can define the factor ( , )hγΘ  as  

 
 ( , ) ( , ) / ( , )I Ih h G hγ γ γΘ ≡ Ξ . (10) 

 

6. On the Quasi-Static Evolution 

An inelastic slip along the slip planes is a relatively slow irreversible process as compared with 
two other time scales:  with the time scale of establishing mechanical equilibrium within the 
matrix and with the time scale of establishing mechanical equilibrium of the inclusion as 
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whole.  The inelastic sliding is opposed by the “plasticity” friction across the slip interfaces.  In 
many situations, the equilibrium equation 8 should be replaced with the more realistic quasi-
static equation  

 
|

( , )( , ) ( , ) , ( , )k
j ik

i j

d h th t d h n R l h t
u t
ψπ γ π

Γ

∂ ∂
= −Κ ΓΘ ≡

∂ ∂∫ , (11) 

where 0Κ >  is a corresponding kinetic function, defining the rate of plastic slip and ( , )h tπ is 
the slip velocity.  The demand of thermodynamic consistency leads to the conclusion that the 
function Κ should be positive.  However, it is not able to add anything more definite even about 
the arguments of this function.  Based on the analogies with other kinetic problems, we should 
expect that the most important arguments of this function are the temperature of the system and 
the area of the slice.  

In the quasi-static case, not only the slip-function ( , ),=d d h t  but all the unknown functions 
become the functions of time:  ( , )i iu u x t= , ( )i ia a t= , . . ( )i i

j jR R t= .  Their time evolution is 
characterized by the following relationships: 

 .
. .

( )( , ) ( )( , ) , ( ) , ( )
mi i
ki i j ml

jkl

dR tu x t da tV х t A t t R
t dt dt

ε∂
= = = Ω

∂
, (12) 

where ( , )iV x t  is the velocity of the matrix’s particles, ( )iA t  is the translational velocity of the 
inclusion as whole, and the matrix’s particles, ( ),Ω j t  are the angular velocity of the inclusion. 

The relationships in equation 12 should be included in the master system of quasi-static 
evolution.  This system should be also supplied with the initial conditions: 

 .( , ) ( ) ( ,0) 0, (0)i i i i
j ju x t a t d h R δ= = = = . (13) 

The condition (equation 4) at infinity should be replaced with the following: 

 | |j j
i ijV x at xκ→ → ∞ . (14) 

 

7. How to Solve the Quasi-Static Master System Iteratively 

It should be emphasized that the master system (equations 1, 2, 5–7, and 11–14) of quasi-static 
evolution is a deeply nonlinear one.  It has several sources of nonlinearity.  Among them are:  the 
standard elastic nonlinearities (i.e., the nonlinearities associated with the elastic potential) and 
the specific nonlinearity, associated with the possibility of non-elastic slip.  Formally, the latter 
source of nonlinearity is associated with the unknown function )(hd  which defines the 
inclusions’ interface S  geometry in the actual configuration.
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Fortunately, this system can be solved iteratively, and each iteration is associated with solving a 
linear boundary value problem.  The procedure is described as follows.   

Assume that we already determined all the functions .( , ), ( ), ( ), and ( , )i
i ju x t a t R t d h t up to a 

certain moment of time, 0t t= .  Let us choose a sufficiently small time-step, ,Δt  and try to 
update these functions for the moment 1 0t t t= + Δ .  To that end, we first calculate the “velocity” 
functions 0 0 0 0( , ), ( ), ( ), and ( , )Ω j

iV x t A t t h tπ by solving a linear boundary value problem.  This 
linear boundary value problem includes the former of the relationships in equation 11.  Other 
equations can be obtained by differentiating equations 1, 2, 4, 5–7, and 10 with respect to time.  
Then, we can update the functions .( , ), ( ), ( ) , and ( , )i

i ju x t a t R t d h t , using the following relations: 

 

 1 0 0 1 0 0

. 1 . 0 0 . . 0 1 0 0

( , ) ( , ) ( , ) , ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) , ( , ) ( , ) ( , ) ,
i i i i
m m j ml
k k jkl

u x t u x t V x t t a t a t A t t

R t R t t R t d h t d h t h t tε π

= + Δ = + Δ

= + Ω = + Δ
 (15) 

 
inferred by equations 11 and 12.  Then, we re-iterate the whole procedure. 

 

8. A Spherical Deck-of-Cards Inclusion Within Isotropic Matrix 

The initial velocities ( , ), ( ), ( ) , ( , ),Ω j
iV x t A t t h tπ and at 0t =  can be calculated explicitly for the 

instructive case of the initially spherical deck-of-cards within an isotropic matrix.  

In the lowest order terms, the system (1, 2, 5–7, and 11) leads to the much simpler system:   

• bulk equation of mechanical equilibrium 

 
 , 0ijkl

k ljc V = ; (16) 

• the kinematic constraint 

 
 

0
.

i i i k
kS

V A G x= + ; (17) 

 
• the equation of zero resultant force acting on the inclusion 

 

 
0

, 0ijkl
k l jS

dS c V n =∫ ; (18) 
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• the equation of zero resultant moment of momentum acting on the inclusion 

 

 
0

, 0ijpq k
mki p q jS

c dSV n xε =∫ ; (19) 

 
• the kinetics equations 

 

 
0

,
( , ) ( , )ijkl k

k l j i
h t c d h V n x l
t γ

γ γ∂Π
= −Κ Γ

∂ ∫ . (20) 

 
In the last system, we use the following notation 0S  for the inclusion in the initial configuration:  

. . (0) /i i
j jG R t≡ ∂ ∂ .  At last, 2

| ,(0) /ijkl
i j k lc u uψ= ∂ ∂ ∂  is the tensor of the instantaneous elastic 

modules in the unstressed configuration. 

In the case of an isotropic matrices, the elasticity tensor ijklc  has the form 

 

 2
1 2

ijkl ij kl ik lj il kjc x x x x x xνμ
ν

⎛ ⎞= + +⎜ ⎟−⎝ ⎠
, (21) 

where μ  and ν  are the shear modulus and the Poisson ratio, respectively. 

The system (equations 16–21) with the condition (equation 14) at infinity allows the following 
solution:   

 

( )

.
, , ..

1 14(1 ) , ;

10, ,
2

j p p q i j
i ij ip pq i ij

i
ij ij ji

W x B B r C r x x
r r

A G

κ ν δ

κ κ

⎛ ⎞ ⎛ ⎞= − − + + ≡⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = −
 (22) 

 
where the constant C  and the tensor pqB  are equal to  

 

 
( )

3
2

.
1 5 1,
5 4(4 5 ) 5 1 2

l
pq l pq pq

RC R B xκ κ
ν ν

⎛ ⎞
= = − +⎜ ⎟⎜ ⎟− −⎝ ⎠

, (23) 

and R  is a radius of the inclusion. 

At the matrix/inclusion interfaces the matrix’s stresses ij
jnσ  are equal to  

 .

p
ij i

j p
xn
r

σ μ= Γ , (24) 
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with the tensor .
i
pΓ  given by the formula  

 . . .
1 11 10 15 .
4 5 1 2

i q i i
p q p p

ν νκ δ κ
ν ν

− −⎛ ⎞Γ ≡ +⎜ ⎟− −⎝ ⎠
 (25) 

 
Inserting this relationship in equation 20, we arrive at the following formula for the rate of 
plastic slip at 0t = : 

 

 
( ) 2 2 1215 1

( ,0)
4 5

h R h
ν

π π σ
ν

−
= −Κ −

−
. (26) 

 
Equation 26 shows that the quantity ( ,0) /hπ Κ  is the biggest at 0h = , i.e., at the plane passing 
through the plane of the spherical deck-of-cards.  It would be premature, however, to conclude 
that the rate of plastic slip is the biggest at this plane.  In fact, the kinetic function Κ can depend 
upon the geometric characteristics of the cross-sections and completely suppress the role of the 
numeratorπ .  Thermodynamics on its own has no means to do more than provide us with 
equation 26.  The determination of the function Κ  requires completely different methods, mostly 
experimental. 

 

9. Conclusion 

In this report, we discussed the problem of developing a thermodynamically consistent 
continuum theory of plasticity of ceramic-like materials, i.e., materials with limited plasticity.  
We assume that the substance is a polycrystal, i.e., a conglomerate of monocrystals.  The limited 
plasticity is associated with limited number of slip planes of each monocrystal.  Our ultimate 
goal is to derive macroscopic equations by averaging the aforementioned ensemble of 
monocrystals.  

We made only the first step in the targeted direction by considering deformations and stresses 
within an isotropic infinite elastic matrix containing an inclusion.  The inclusion is capable of 
relative slippage of its parts along a single family of parallel planes but is not capable of 
accumulated elastic energy.  For this system, we established thermodynamically consistent 
conditions of equilibrium and quasi-static evolution.  Also, we solved explicitly the simplest 
problem for the case of an initially spherical inclusion.  

The results presented require further developments in several directions.  Among them are the 
following:



 13

• Accounting for the deformability of the “decks-of-cards,” 

• Accounting for multiple independent slip systems, 

• Development of full thermodynamic theory, including irreversible generation of heat, 

• Further analysis of the simplest but instructive boundary value problems, 

• Realization of the rigorous scheme of homogenizations and verification of the consistency 
of the Batdorf-Budyansky model, and 

• Numerical implementation of suggested models.   
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